
Introduction to Guernsey Software's Database Components
The Components
Data Access Components

Connection Component
Query Component
Query Link Component
Field Objects
Param Objects
Binary Streams

Data Aware Controls
DataGrid
DataEdit
DataMemo
DataImage





Connection Component
Published properties
AutoCommit
Connected
ConnectionMethod
ConnectionStr
DataSource
IsolationLvl
Password
Procedures
Tables

Events
TCommitEvent = procedure(Sender: TComponent) of Object;
TConnectEvent = procedure(Sender: TComponent) of Object;

BeforeCommit
BeforeRollback
BeforeConnect
BeforeDisconnect

Public Procedures
Commit
ICommit
CommitAll
Rollback
IRollback
RollbackAll
SetActiveState
SetPreparedState

Public Functions
AnyConnection
GetActiveCount
GetPreparedCount

Public Properties
Connections
DBC
IConnected



AutoCommit
type: boolean
values: true/false
Description
AutoCommit determines whether or not a commit is generated automatically for you after 
each statement.    Set this to true if you want every statement committed.    When set to 
false, you are responsible for issuing commits/rollbacks.

Setting AutoCommit to false can speed processing of multiple statements (such as during a 
call to update on the query component).    Also note that if AutoCommit is set to true, you 
will not be able to rollback statements during an update if a failure occurs.    For example, if 
you call update on a result set which has had 10 records changed, and the fifth one fails, you
will not be able to rollback the first four updates when AutoCommit is true.



Connected
type: boolean
values: true/false
Description
Connected controls the first connection slot.    Setting connected to true causes the 
connection component to connect on the first connection channel.    This is provided for 
backward compatiblity and for design time connection.

The connection component can support up to 12 connections at any one time.    You can 
connect on a particular connection at run time by assigning to the public property 
IConnected[i] where i is the channel you want connected.    So Connected is equivalent to 
IConnected[1].    You can determine which connection a query is issued on (as well as any 
updates associated with that query) by setting the ConnectionNo property on the query 
component to a value between 1 and 12 (see query component).



ConnectionMethod
type: TConnMethod
values: cmConnect/cmDriverConnect
Description
Connection method determines how information is passes to create a connection.    Setting 
ConnectionMethod to cmConnect causes the connection component to only use the UserID, 
Password, and DataSource to create a connection.

If additional information is required to establish a connection then you should set this to 
cmDriverConnect and use the ConnectionStr to pass the necessary information.    When 
enough information is provided in the ConnectionStr, a connection is established.    If the 
information is not sufficient to create the connection then the driver will prompt for 
additional information.    This information will be appending to the supplied ConnectionStr.

Other connection methods may be provided in the future.



ConnectionStr
type: String
values: driver dependent
Description
The ConnectionStr property is used to pass driver specific information to a particular driver.   
See documentation on the specific driver for more information.



DataSource
type: String
values: an existing datasource (ODBC datasource or DB2 cataloqued database).
Description
The DataSource property specifies the datasource to which you want to establish a 
connection.    This property is required when using the cmConnect method and you want to 
connect to a datasource other than the default datasource.



IsolationLvl
type: TIsolation
values: tiDefault/tiUnCommitted/tiCommitted/tiRepeatable/tiSerializable/tiVersioning
Description
IsolationLvl determines the type of transaction isolation you want to use.    Possible values 
will depend on the server you are using.    See the documention for you server for more 
information on isolation levels.



Password
type: String
values: any valid string
Description
Password is used when cmConnect method is used.    This is passed as the password by 
which to establish a connection to the datasource.



Procedures
Description
Procedures is used to get information about stored procedures.    For datasources that 
support this, it will provide a list of stored procedures and allow you to get information about
the columns/parameters of the stored proc.



Tables
Description
Tables is used to get information about tables in a database.    For datasource that support 
this, it will provide a list of tables and allow you to get information about the fields/columns 
in the table.    This is usefull when trying to determine the values to set for the parameters in
a parameterized query.



UserID
type: String
values: any valid string
Description
UserID is used when cmConnect method is used.    This is passed as the user id by which to 
establish a connection to the datasource.



BeforeCommit: TCommitEvent
BeforeCommit is called when the Commit method is invoked.    It is called prior to the commit
being issued to ODBC.    This event can be used to prevent the commit from being issued by 
raising an exception.



BeforeRollback: TCommitEvent
BeforeRollback is called when the Rollback method is invoked.    It is called prior to the 
rollback being issued to ODBC.    This event can be used to prevent the rollback from being 
issued by raising an exception.



BeforeConnect: TConnectEvent
BeforeConnect is called when a connection is attempted, but prior to calling the ODBC API 
connect routines.    This provides the opportunity to prompt the user for connection 
information or other pre-connection initialization.



BeforeDisconnect: TConnectEvent
This event is called when a disconnect is requested, but prior to the disconnect being issued.



Commit
Defined as ICommit(1).    Provided for backward compatibility.



ICommit(cIndex: TConnection)
ICommit issues a commit on connection number cIndex.    cIndex is an integer value between
1 and 12.



CommitAll
CommitAll will issue a commit on all connections.    This is not isolated to a particular 
datasource.    It will issue a commit on all connections for all datasources.



Defined as IRollback(1).    Provided for backward compatibility.



IRollback(cIndex: TConnection)
IRollback issues a rollback on connection number cIndex.    cIndex is an integer value 
between 1 and 12.



RollbackAll
RollbackAll will issue a rollback on all connections.    This is not isolated to a particular 
datasource.    It will issue a rollback on all connections for all datasources.



SetActiveState(AQuery: TGQuery; Active: Boolean)
Internal use.



SetPreparedState(AQuery: TGQuery; Prepared: Boolean)
Internal use.



AnyConnection
Return Value Type: Boolean
Returns true if any connection channel is active.



GetActiveCount
Return Value Type: LongInt
Returns the number of active queries using this connection component.



GetPreparedCount
Return Value Type: LongInt
Returns the number of prepared queries using this connection component.



Connections
Type: TConnectionSet
Values: set of numbers from 1 to 12
Description
Read Only.    Connections is a set of values from 1 to 12 that includes all of the channels 
which have active connections. For example if channels 1 and 3 are active then Connections 
will be [1, 3].



DBC[cIndex: TConnection]
Type: pointer
Description
ReadOnly.    DBC contains an array of connection handles.    This is mainly for internal use.



IConnected[I: TConnection]
Type: Boolean
values: true/false
Description
IConnected is used to toggle a connection for any given channel.    To connect on channel 3 
issue IConnected[3] := True.





Query Component
Published properties
Active
Connection
ConnectionNo
EditFields
ExecDirect
KeyFields
Params
RetrieveAsNeeded
SQL
UpdateTable

Events
TScrollType = (stFirst, stLast, stNext, stPrior, stAbsolute);
TScrollEvent = procedure(Sender: TComponent; ScrollBy: TScrollType; ScrollInfo: LongInt) of 
Object;
TQueryActivateEvent = procedure(Sender: TComponent) of Object;
TUpdateEvent = procedure(Sender: TComponent) of Object;
TEditEvent = procedure(Sender: TComponent) of Object;
TOnFieldTextEvent = procedure(AField: TGField; var Value: String) of Object;
TRowChangedEvent = procedure(Sender: TComponent) of Object;
TRowsAffectedEvent = procedure(Sender: TComponent; Operation: TOperationTypes; 
RowsAffected: LongInt) of Object;
TUpdateErrorEvent = procedure(Sender: TComponent; Stmt: pointer; Operation: 
TOperationTypes; Response: TModalResult) of Object;

After/BeforeActivate
After/BeforeClose
After/BeforeDeleteRec
After/BeforeEditRec
After/BeforeFirst
After/BeforeInsertRec
After/BeforeLast
After/BeforeNext
After/BeforePrior
After/BeforeSave
After/BeforeScroll
After/BeforeUpdate
OnGet/OnSetFieldText
RowChanged
RowsAffected
UpdateError

Public Procedures
Append
Cancel
Delete
Execute
Insert
ResetMode
ResetRowFlags
ResetRows
Save



SaveMode
Sort
UnDelete
UnDo
Update
NotifyControls

Public Functions
BeforeEdit
FieldByName
Find
FindField
First
Last
Next
Prior

Public Properties
BOF
Buffer
BufferSize
ControlsDisabled
CursorEOF
EOF
ExtendedInfo
Field
FieldCount
Prepared
QueryMode
RecordCount
RecordNo
RecordSize



Active
Type: boolean
values: true/false
Description
Active opens and closes the cursor.    Set this property to true to activate a statement which 
returns a result set.



Connection
Type: String
Values: any string value which corresponds to the datasource property of an available 
connection component.
Description
Connection determines which datasource to use to activate the statement.    The drop down 
list will show all datasources for which there is an available connection component.



ConnectionNo
Type: TConnection
Values: integer from 1 to 12
Description
Connection connection component can maintain up to 12 connections (may vary depending 
on the server and the driver). The ConnectionNo property allows you to specify which 
connection to issue this query.    This is also the connection that will be used to issue updates
in the case of an editable result set.



EditFields
Type: TStrings
Description
EditFields is a list of fields contained in UpdateTable (see below) that you want updated in 
your next call to Update.    This property can be edited directly by assigned to the list or 
indirectly by using the UpdateTable property editor.



KeyFields
Type: TStrings
Description
KeyFields is a list of fields contained in UpdateTable (see below) that you want to use as key 
fields to uniquely identify a row in your next call to Update.    This property can be edited 
directly by assigned to the list or indirectly by using the UpdateTable property editor.    Any 
non-blob type fields can be listed in this property.



ExecDirect
Values: true/false
Description
The ExecDirect property determines the method of execution for a statement.    If ExecDirect 
is true when Execute is called or Active is set to true then the statement is passed directly to
the driver, bypassing a prepare.    If ExecDirect is false, then the statement is prepare prior to
passing it to the driver.    Set ExecDirect to true when calling stored procedures or using ddl 
statements (such as create table, drop table, create index, etc.).    Set ExecDirect to false if a
statement will be executed repeatedly.

NOTE: when ExecDirect is set to false field objects are created after the prepare and prior to 
execution of the statement and are destroyed after Prepared is set to false.



Params
Type: TGParams
Description
The Params property contains a list of parameter objects (TGParam) for the current 
statement.    The parameters are re- created each time the statement is set.    The properties 
for the parameter objects must be set prior to executing the statement (though, can be done
after the statement has been prepared).



RetrieveAsNeeded
Type: Boolean
Values: true/false
Description
Use RetrieveAsNeeded to inform the query component to only download records as they are 
requested (via a call to Next, Last, or RecordNo).    A call to Last will force the entire result set
to downloaded.



SQL
Type: TStrings
Description
SQL contains the statement that you want to execute.    You can use the ODBC syntax for 
maximum portability (see an ODBC reference) or server specific syntax.



UpdateTable
Type: String
Values: any valid table name
Description
UpdateTable should contain the name of the table to issue updates against.    All fields listed 
in EditFields and KeyFields must be in this table.    By changing these three properties 
between calls to Update, you can update queries that involve more than one table.



After/BeforeActivate: TQueryActivateEvent
Occur before and after the query is activated.    That is when Active is set to true, these 
events are triggered.



After/BeforeClose: TQueryActivateEvent
Occur when Active is set to false.



After/BeforeDeleteRec: TEditEvent
Occur when a record is deleted.



After/BeforeEditRec: TEditEvent
Occur before a record is edited for the first time since Save was last called.



After/BeforeFirst: TScrollEvent
Occur when First is called.



After/BeforeInsertRec: TEditEvent
Occur when a record is inserted.    You can use the after insert event to initialize new records.



After/BeforeLast: TScrollEvent
Occur when Last is called.



After/BeforeNext: TScrollEvent
Occur when Next is called.



After/BeforePrior: TScrollEvent
Occur when Prior is called.



After/BeforeSave: TEditEvent
Occur when the current record buffer is going to be saved to the list of record buffers.



After/BeforeScroll: TScrollEvent
Occur when any scrolling takes place.



After/BeforeUpdate: TUpdateEvent
Occurs when Update is called.



OnGet/OnSetFieldText: TOnFieldTextEvent
See Formatting display data in Users Guide.



RowChanged: TRowChangedEvent This event is called whenever a new record buffer is made
active.    This can happen when scrolling, saving, undo-ing, deleting, cancelling edits, 
inserting, etc.    This event is called whenever all controls should refresh their data. 



RowsAffected: TRowsAffectedEvent
See Handling problems during the update operation in Users Guide.



UpdateError: TUpdateErrorEvent See Handling problems during the update operation in 
Users Guide. 



Append
Call this method to append an empty record to the end of the record buffers



Cancel
Cancel will cancel edits to the current record.



Delete
Delete the current record



Execute
Use execute to send non-select statements to the DBMS, such as inserts/updates/deletes or 
DDL.



Insert
Insert an empty record buffer at the current position in the result set



ResetMode
Internal use



ResetRowFlags
This method clears the "dirty" flags for the current record.



ResetRows
ResetRows clears the "dirty" flags for all rows in the result set.    This should be called after a 
successful series of calls to Update.    That is, once all of the current updates have been sent 
to the server, this should be called to reset all of the flags and clear out the deleted record 
buffers.



Save
Save any changes to the current record into the list of record buffers



SaveMode
Internal use



Sort(SortFields: string)
Call sort to re-sort the current result set.    SortFields is a string contains a comma separated 
list of field names on which to do the sort.    The default sort order is ascending.    To perform 
a descending sort on a field add a des after the field name. For example to sort on a 
department number field ascending and employee last name descending: SortFields = 
"deptno, lastname des, firstname des".    Sort order is not maintained as records are added 
and edited.    Sort must be called after any edits that would cause the order to become 
unsorted.



UnDelete
Call UnDelete when positioned on a deleted record to restore it to the result set.    That is the
record will be removed from the list of deleted records and replaced in the result set buffers.



UnDo
Call UnDo when positioned on a modifed record to return the record to its original state.    
The original state will be the state the record was in when it was first fetched from the 
server



Update
Update will send all edits (updates/inserts/deletes) to the server for fields currently in the 
EditFields list.    To update multiple tables, reassign values to the EditFields, KeyFields, and 
UpdateTable properties between calls to update.



NotifyControls(NotifyEvent: TLinkEvent; Info: LongInt)
Internal use



BeforeEdit
Return Value: Boolean
Internal use.    BeforeEdit is call by the field objects before a value is assigned to them.    If 
BeforeEdit returns false, the field rejects the assignment.



FieldByName(FieldName: String)
Return Value: TGField
Attempts to locate a field in the result set based on the field name.    If the field is not found, 
the an exception is raised.    If the field is found, then the field object is returned.



Find(FindVals: array of const)
Return Value: boolean
Attempts to find a record based on the field values passed in FindVals.    The function 
assumes that the result set is sorted on the fields you are attempting to search on.    The 
values are compared from left to right with the fields listed in the call to sort in order to find 
a match.    The number of values passed to Find must be equal to or less than the number of 
fields listed in the call to Sort.

To find the first employee with a last name starting with the letter O in dept number 30 
(using the sort mentioned above for the sort procedure) call Find([30, 'O']);

Find returns true if an exact match is found.    Otherwise it returns false.    The record position
will be as follows: the next largest record if there is a record with a value larger than the 
search value, otherwise will be positioned on the last record of the result set.



FindField(FieldName: String)
Return Value: TGField
Attempts to locate a field in the result set based on the field name.    If the field is not found, 
nil is returned.    If the field is found, then the field object is returned.



First
Positions on the first record in the result set



Last
Makes the last record of the result set then active record.    If RetrieveAsNeeded is true, then 
calling last will download the remaining records of the result set.



Next
Makes the record following the current record active



Prior Makes the record preceding the current record active 



BOF
Type: Boolean
Read Only.    BOF is true if Prior is called when positioned on the first record.



Buffer
Type: TBuffers
Values:      bData/bOriginal/bDeleted
Description
Buffer determines the record buffers which are currently active.    bData is the default value 
and makes the editable record buffers active.    Setting Buffer to bOriginal will make the 
original version of any edited records visible.    bDeleted will make any deleted records 
visible.    By making the deleted records visible, you can UnDelete records.



BufferSize
Type: LongInt
Description
Read Only.    BufferSize is used internally and represents the amount of memory required for 
each record buffer.    This includes memory for row and field status flags as well as field data. 
Only four bytes is allocated for blob data in order to store a handle to a global memory 
object.



ControlsDisabled
Type: Boolean
Description
Mainly used internally.    Set this to True when performing operations which cause extensive 
scrolling in a query object. Internally this is set when Update is called to avoid redrawing of 
data controls as the active buffer is scrolled through the result set.



CursorEOF
Type: Boolean
Description
Read Only.    CursorEOF is set to true when the underlying cursor has reached the end of the 
result set.    As soon as the cursor reaches the end of the result set, the cursor is closed.



EOF
Type: Boolean
Description
Read Only.    EOF is true if Next is called when positioned on the last record.



ExtendedInfo
Type: TGExtFields
Description
ExtendedInfo is mainly used internally.    It is used to stream extended field information to 
and from disk.



Field[I: Integer]
Type: TGField
Description
Returns the I'th field of the record.    This is a 1 based array of field objects.



FieldCount
Type: LongInt
Description
Returns the total number of fields in the result set.



Prepared
Type: Boolean
Description
Use prepared to improve performance when a query will be executed multiple times.    Be 
sure to set prepared to false when the query will no longer be needed to free up resources.



QueryMode
Type: TQueryMode
Values: qmViewing/qmEditing/qmInserting/qmClosed
Description
QueryMode returns the status of the query component.



RecordCount
Type: LongInt
Description
RecordCount returns the number of record buffers in the active buffers.    If 
RetrieveAsNeeded is true, then this number may not reflect the total number of records in 
the result set if all of the records have not been retrieved.    This number will reflect the 
number of records that have been actually retrieved.



RecordNo
Type: LongInt
Description
RecordNo is a number between 1 and RecordCount which represents the active record.



RecordSize
Type: LongInt
Description
RecordSize is for internal use only.    It represents the number of bytes of storage required for
the field data in a record.    Note that blobs only occupy four bytes of storage in the record 
buffer to store a handle to a global memory object.





Binary Stream Objects
Under Construction

See Delphi On-Line help for information on streams.    These components provide a stream 
object that is a standard stream. The only difference is the constructor.    The constructor 
takes a reference to a binary field object.    For example, to create a binary stream for an 
ODBC binary field:

MyStream := TODBCBinaryStream.Create(ODBCQuery1.FieldByName('MyBlobField') as 
TGBinaryField);





Field Objects
Public Procedures
BindColumn

Public Procedures: Binary/Blob Field Objects Only
LoadFromFile
LoadFromStream
ReadBlock
SaveToFile
SaveToStream
Truncate
WriteBlock

Public Properties
AsDate
AsFloat
AsInteger
AsString
AsText
AsTime
AsTimeStamp
BufferSize
DataLen
DataType
DisplayLabel
DisplaySize
FieldName
FieldNo
IsNull
Nullable
Offset
Precision
Scale
SQLType
SortDir
Status
TableFieldName
TableName
Value



BindColumn(RecBuffer: PChar; RecSize: LongInt)
Internal use



AsDate
Type: Date_Struct
Description
Returns the field value in a date structure.    Date and Timestamp field types can be access 
via the AsDate property.



AsFloat
Type: Double
Description
Returns the field value as a double.    Float field types can be accessed using AsFloat.



AsInteger
Type: LongInt
Description
Returns an integer value for the field.    All integer types can be access using AsInteger.



AsString
Type: String
Description
AsString returns a string representation of the field value.    All non-blob fields can be 
accessed as string.



AsText
Type: String
Description
AsText returns a string representation of the field value after calling OnGetText or OnSetText 
of the quer component.    All non-blob fields can be accessed as text.



AsTime
Type: Time_Struct
Description
Returns the field value in a time structure.    Time and Timestamp field types can be access 
via the AsTime property.



AsTimeStamp
Type: TimeStamp_Struct
Description
Returns the field value in a timestamp structure.    Timestamp field types can be access via 
the AsTimeStamp property.



BufferSize
Type: LongInt
Description
BufferSize is the number of bytes that this field occupies in the record buffer.    Blob fields, 
for instance, have a BufferSize of 4, which is the size of THandle.



DataLen
Type: LongInt
Description
Read Only.    DataLen is the length of the field as returned by the driver.



DataType
Type: Integer
Values:    SQL_C_CHAR/SQL_C_LONG/SQL_C_SHORT/SQL_C_FLOAT/SQL_C_DOUBLE

SQL_C_DATE/SQL_C_TIME/SQL_C_TIMESTAMP/SQL_C_BINARY/SQL_C_BIT/
SQL_C_TINYINT

Description
Read Only.    DataType is the format that the field reads the data from the driver.



DisplayLabel
Type: String
Description
DisplayLabel is used by the grid to determine the column heading for this field.



DisplaySize
Type: LongInt
Description
DisplaySize is used by the grid to determine the initial column width for this field.



FieldName
Type: String
Description
The name of the field as returned by the driver.    Note that some drivers/DBMSs may rename
duplicate columns (see TableFieldName property to be able to correctly update renamed 
columns).



FieldNo
Type: LongInt
Description
Read Only.    Internal use.



IsNull
Type: Boolean
Description
IsNull is a read/write property to set the null status of a field.    Set IsNull to true to set the 
field to null.



Nullable
Type: Integer
Values:      SQL_NO_NULLS/SQL_NULLABLE/SQL_NULLABLE_UNKNOWN
Description
ReadOnly.    Use this property to determine whether or not this field can accept null values.



Offset
Type: LongInt
Description
Internal use.    This is the offset into the record buffer at which this fields data is stored.



Precision
Type: LongInt
Description
See DataLen property for the Param Object



Scale
Type: Integer
Description
See Scale for the Param Object



SQLType
Type: Integer
Description
See SQLType for the Param Object



SortDir
Type: TSortDir
Values: sdAsc/sdDesc
Description
If this field is currently used for sorting then SortDir determines whether the order is 
ascending (sdAsc) or descending for this field.    See Sort(...) method of the Query 
component.



Status
Type: TFieldStat
Values: fsOriginal/fsModified
Description
Read Only.    An indicator to the status of this field for the current record.    Returns fsModified
if this field has been edited since the record has been retrieved or since the last call to 
ResetRows.



TableFieldName
Type: String
Description
Table Field Name is the name of the actual underlying field in the database.    Usually this is 
the same as the FieldName, however in the case of aliased fields the two properties could 
differ.    Use the UpdateTable property editor of the Query component to edit this value at 
design time.



TableName
Type: String read GetTableName
Description
Not used currently.



Value
Type: PChar
Description
Read Only.    Returns the raw data buffer as retrieved from the driver.    Mainly for internal 
use.



LoadFromFile(FileName: String)
LoadFromFile reads the specified file into the blob field.



LoadFromStream(aStream: TStream)
LoadFromStream will read data from any stream into the blob field.



ReadBlock(Offset, Size: LongInt; Buffer: PChar; var BytesRead: LongInt)
ReadBlock will read a portion of the blob into the provided buffer.    The memory for the 
buffer must have been allocated prior to the call to ReadBlock.    BytesRead is set to the 
actual number of bytes copied into the provided buffer.    Offset is the position in the blob to 
begin reading data (0 is the first byte).    Size is the number of bytes to read.    Size is not 
limited to 64k.



SaveToFile(FileName: String)
SaveToFile will write the blob data to the specified file.    If a file already exists with the 
provided name, it will be overwritten.



SaveToStream(aStream: TStream)
SaveToStream will write the blob data to any stream.    See Delphi help for more information 
on streams.



Truncate(NewSize: LongInt)
Use Truncate to reduce the size of a blob.    This is only necessary if you use write block to 
write a new blob value to the field that is smaller than the current blob.



WriteBlock(Offset, Size: LongInt; Buffer: PChar)
Use WriteBlock to write raw binary data to the field.    Offset is the starting position in the 
blob to begin writting data (0 is the first byte).    If Offset + Size is larger than the current 
blob, new memory will be allocated automatically.    However, Offset must be a value within 
the current blob.





Param Objects
Public Procedures
BindParam

Public Properties
AsString
AsInteger
AsFloat
AsDate
AsTime
AsTimeStamp
BufferSize
DataLen
ParamName
Scale
ParamType
SQLType
IsNull



BindParam(DBC: pointer; Stmt: pointer)
Internal use.



AsString
Type: String
Read or write the parameter value as a string



AsInteger
Type: LongInt
Read or write the parameter value as an integer



AsFloat
Type: Double
Read or write the parameter value as a double



AsDate
Type: Date_Struct
Read or write the parameter value as a date



AsTime
Type: Time_Struct
Read or write the parameter value as time



AsTimeStamp
Type: TimeStamp_Struct
Read or write the parameter value as time stamp/date time



BufferSize
Type: LongInt
Internal use



DataLen
Type: LongInt
Meaning depends upon the SQLType.    This corresponds to the precision value in ODBC and 
DB2.    For character values this is the length of the string.    For decimal/numeric types this is
the number of digits in the number.



ParamName
Type: String
This is the name of the parameter in the statement.    This is the name to use to access the 
parameter when using ParamByName to access the parameter.



Scale
Type: Integer
Meaning depends upon the SQLType.    This corresponds to the scale value in ODBC and DB2. 
For decimal/numeric types this is the number of digits after the decimal place in the number.



ParamType
Type: Integer
Values:    SQL_PARAM_INPUT/SQL_PARAM_INPUT_OUTPUT/SQL_PARAM_RESULT_COL/ 
SQL_PARAM_OUTPUT/SQL_PARAM_RETURN_VALUE
Most common values for this property are input, input_output, or output.    An input 
parameter is a parameter that does not recieve a value from the statement (such as 
parameters in the where clause of a select statement).    An input_output parameter is a 
parameter that is to pass values to the server as well as recieve values back from the server
(as in parameters to stored procedures that are input/output parameters).    An output 
parameter is a parameter that is to recieve values back from the server (as in parameters to
stored procedures that are output parameters).



SQLType
Type: Integer
Values:

SQL_Char, SQL_Numeric, SQL_Decimal, SQL_Integer, SQL_SmallInt,
SQL_Float, SQL_Real, SQL_Double, SQL_VarChar, SQL_Date, SQL_Time,
SQL_TimeStamp, SQL_LongVarChar, SQL_Binary, SQL_VarBinary,
SQL_LongVarBinary, SQL_BigInt, SQL_TinyInt, SQL_Bit

This property informs the driver as to the underlying field type for the parameter.    This 
value should be the same as the field to which the parameter is being compared (use the 
tables property of the connection component to determine the field type).



IsNull
Type: boolean
Values: True/False
Set IsNull to true to pass a null value in a parameter to the server.    If IsNull is false, then the
value assinged via one of the assignment properties mentioned above is used.





Query Link Component
Published Properties
Query



QueryLink
type: TGQuery values: any ODBCQuery or DB2Query component
Description
The QueryLink component is an optional component which is provided for assisting in multi 
form applications.    The QueryLink makes multi-form application simpler by allowing the 
developer to connect all of the data aware controls on a form to a query link at design time 
and then connect the QueryLink to the Query at run-time.    This is useful when the Query 
that the controls reference resides on a different form. 





DataGrid Component
Published Properties
DataSource
DisplayFields



DataEdit Component
Published Properties
DataField
DataSource



DataMemo Component
Published Properties
DataField
DataSource



DataImage Component
Published Properties
DataField
DataSource



DataField
type: String
values: any valid field name contained in the associated DataSource
Description
The DataField property is the name of the field in a result set with which to associate the 
data aware control.



DataSource type: TGNVControl
values: any valid Query or QueryLink component
Description
The DataSource property should contain a reference to a Query or QueryLink component.    
This is the query with which the control should be associated. 



DisplayFields
type: TStrings
Description
DisplayFields should a list of fields contained in the associated query component that are to 
be displayed in the grid.    The list should contain one field per line and the fields should 
appear in the order in which they should appear in the grid.    An empty list will show all 
fields.






